Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0290342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37590291

RESUMO

Models of arterial injury in rodents have been invaluable to our current understanding of vessel restenosis and play a continuing role in the development of endovascular interventions for cardiovascular disease. Mechanical distention of the vessel wall and denudation of the vessel endothelium are the two major modes of vessel injury observed in most clinical pathologies and are critical to the reproducible modelling of progressive neointimal hyperplasia. The current models which have dominated this research area are the mouse wire carotid or femoral injury and the rat carotid balloon injury. While these elicit simultaneous distension of the vessel wall and denudation of the luminal endothelium, each model carries limitations that need to be addressed using a complementary injury model. Wire injuries in mice are highly technical and procedurally challenging due to small vessel diameters, while rat balloon injuries require permanent blood vessel ligation and disruption of native blood flow. Complementary models of vascular injury with reproducibility, convenience, and increased physiological relevance to the pathophysiology of endovascular injury would allow for improved studies of neointimal hyperplasia in both basic and translational research. In this study, we developed a new surgical model that elicits vessel distention and endothelial denudation injury using sequential steps using microforceps and a standard needle catheter inserted via arteriotomy into a rat common carotid artery, without requiring permanent ligation of branching arteries. After 2 weeks post-injury this model elicits highly reproducible neointimal hyperplasia and rates of re-endothelialisation similar to current wire and balloon injury models. Furthermore, evaluation of the smooth muscle cell phenotype profile, inflammatory response and extracellular matrix within the developing neointima, showed that our model replicated the vessel remodelling outcomes critical to restenosis and those becoming increasingly focused upon in the development of new anti-restenosis therapies.


Assuntos
Lesões do Sistema Vascular , Ratos , Camundongos , Animais , Lesões do Sistema Vascular/etiologia , Hiperplasia , Neointima , Reprodutibilidade dos Testes , Artéria Carótida Primitiva , Constrição Patológica
2.
Cells ; 12(13)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37443758

RESUMO

Periosteum is a highly vascularized membrane lining the surface of bones. It plays essential roles in bone repair following injury and reconstruction following invasive surgeries. To broaden the use of periosteum, including for augmenting in vitro bone engineering and/or in vivo bone repair, we have developed an ex vivo perfusion bioreactor system to maintain the cellular viability and metabolism of surgically resected periosteal flaps. Each specimen was placed in a 3D printed bioreactor connected to a peristaltic pump designed for the optimal flow rates of tissue perfusate. Nutrients and oxygen were perfused via the periosteal arteries to mimic physiological conditions. Biochemical assays and histological staining indicate component cell viability after perfusion for almost 4 weeks. Our work provides the proof-of-concept of ex vivo periosteum perfusion for long-term tissue preservation, paving the way for innovative bone engineering approaches that use autotransplanted periosteum to enhance in vivo bone repair.


Assuntos
Periósteo , Engenharia Tecidual , Ovinos , Animais , Periósteo/irrigação sanguínea , Periósteo/transplante , Retalhos Cirúrgicos , Perfusão , Reatores Biológicos
3.
Biomed Mater ; 17(4)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35413704

RESUMO

Access to lab-grown fully functional blood vessels would provide an invaluable resource to vascular medicine. The complex architecture and cellular makeup of native vessels, however, makes this extremely challenging to reproducein vitro. Bioreactor systems have helped advanced research in this area by replicating many of the physiological conditions necessary for full-scale tissue growth outside of the body. A key element underpinning these technologies are 3D vascular graft templates which serve as temporary scaffolds to direct cell growth into similar cellular architectures observed in native vessels. Grafts further engineered with appropriate physical cues to accommodate the multiple cell types that reside within native vessels may help improve the production efficiency and physiological accuracy of bioreactor-grown vessel substitutes. Here, we engineered two distinct scaffold architectures into an electrospun vascular graft aiming to encourage the spatial organisation of human vascular endothelial cells (hCAECs) in a continuous luminal monolayer, co-cultured with human fibroblasts (hFBs) populating the graft wall. Using an electrospun composite of polycaprolactone and gelatin, we evaluated physical parameters including fibre diameter, fibre alignment, and porosity, that best mimicked the spatial composition and growth of hCAECs and hFBs in native vessels. Upon identifying the optimal scaffold architectures for each cell type, we constructed a custom-designed mandrel that combined these distinct architectures into a single vascular graft during a single electrospinning processing run. When connected to a perfusion bioreactor system, the dual architecture graft spatially oriented hCAECs and hFBs into the graft wall and lumen, respectively, directly from circulation. This biomimetic cell organisation was consistent with positive graft remodelling with significant collagen deposition in the graft wall. These findings demonstrate the influence of architectural cues to direct cell growth within vascular graft templates and the future potential of these approaches to more accurately and efficiency produce blood vessel substitutes in bioreactor systems.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Biomimética , Reatores Biológicos , Prótese Vascular , Células Endoteliais/fisiologia , Humanos , Perfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...